
Securing Kubernetes 
Container Platforms 
in 2022

Lars Larsson
PhD & Senior Cloud Architect @ Elastisys

NSA/CISA Kubernetes Hardening Guidance and Beyond

https://www.linkedin.com/in/llarsson/
https://elastisys.com/


Containers live in a world 
where…

Reality check

● 56% of companies are not vulnerability scanning

● ~70% of companies will run containerized workloads in 2023

● Misconfiguration makes up 59% of Kubernetes security incidents

😱

https://about.gitlab.com/developer-survey/
https://about.gitlab.com/topics/application-security/beginners-guide-to-container-security/
https://www.altoros.com/blog/misconfigurations-make-up-59-of-kubernetes-security-incidents/


Uncomfortable question

What permissions have you given me 

in your Kubernetes cluster if I manage 

to hack into your application?



NSA/CISA Kubernetes 
Hardening Guidance

Tech report from August 2021 (1.0) and 

updated in March of 2022 (1.1)

● Focused on Kubernetes itself

○ Detailed discussion of 

security-related configuration

○ Example code

● Mentions other security software (in 

passing)

● Focuses mainly on hardening, not 

security as a process

https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/2716980/nsa-cisa-release-kubernetes-hardening-guidance/


What’s new in 1.1?

● “Threat Detection” section

○ What would some typical attacks 

look like to an operator?

● Discussion and suggestions for audit log 

levels

○ Avoid storing sensitive requests 

(e.g. Secrets)

● Remember the whole application 

context, including the cloud



Scan containers and Pods for 
vulnerabilities or misconfigurations

● Container images are immutable

○ Insecure code stays in time capsule

● Component stability: infrequent updates → worse security

● Scan images for known vulnerabilities

● Report: using an Admission Controller

🤓 Lars adds

● Daily scan all images that are in active use!

1.

Difficulty

Impact



Run containers and Pods 
with the least privileges possible

● 😱 Containers run as “root” by default 😱
● Container file systems: read-only until need arises

● Use most restrictive Pod Security Policies (<= v1.21) or Pod Security Standard 

(>= 1.22)

● Avoid handing Default Service Account to Pods

● Limit kernel interactions using seccomp, AppArmor, or gVisor-like sandboxes

🤓 Lars adds 

● Also encode your policies for automatic enforcement via Open Policy Agent

2.

Difficulty

Impact



Use network separation for 
compromise damage control

● Separate control plane and worker node networks

● Default settings allow all Pods to network with all other Pods

○ Security is only as strong as the weakest point!

● Network Policies are Kubernetes-aware firewall rules

○ Specify rules for IP blocks or Kubernetes objects

○ Allow only “backend” to connect to “database” -- nothing else

3.

Difficulty

Impact



Protect confidentiality: firewalls and 
encryption

● Restrict access to Kubernetes core components

○ API server, etcd, Controller Managers

● Network traffic in Kubernetes clusters is unencrypted by default

🤓 Lars adds

● Use a networking provider with transparent encryption, e.g., Calico with 

WireGuard support

4.

Difficulty

Impact

https://www.tigera.io/blog/introducing-wireguard-encryption-with-calico/
https://www.tigera.io/blog/introducing-wireguard-encryption-with-calico/


Limit attack surface: authn, authz, 
RBAC

● Enable authentication, authorization, and role-based access control 

🤓 Lars adds

● Disable the perpetual admin token created during installation

● OpenID Connect for user and group membership

● Disable anonymous access

● Restrict permissions as much as possible with RBAC

5.

Difficulty

Impact



Audit logging, log auditing

● Capture all logs from the entire environment, collect into single system

● All API calls can be logged for auditing purposes

○ Log at appropriate levels to avoid logging e.g. Secrets

○ Creates a huge amount of logs!

● Use an automated system for processing audit logs

🤓 Lars adds

● Falco can act as a simple Security Incident and Event Management (SIEM) 

system together with centralized logging, e.g., OpenSearch

●

●

6.

Difficulty

Impact

https://falco.org/
https://en.wikipedia.org/wiki/Security_information_and_event_management
https://opensearch.org/


Periodically scan, review, and 
patch Kubernetes

● Kubernetes has a new release ~3 times per year

○ N-3 security updates support (current and the two previous ones)

● Security features are typically opt-in, rather than opt-out

○ You need to opt-in as soon as possible

● Automated testing can help find insecure (default) settings

7.

Difficulty

Impact



Are automated 
vulnerability tools sufficient?

● Kubescape, kube-bench

○ Investigate Kubernetes API (kubescape) or control plane host

● Low-hanging fruit of vulnerability scanning

🤓 Lars adds 

● You must do this to not scream “insecure cluster over here!”

● Limited in what they can investigate, and always will be

● Encryption at rest storage, firewall rules, security policies encoded in other 

systems than Kubernetes, underlying operating system, third-party software...

🤔

https://github.com/armosec/kubescape
https://github.com/aquasecurity/kube-bench


Beyond the NSA/CISA 
recommendations

8 practical advice from Lars



Prevent misconfiguration, 
don’t just check for it.

● 2/3 of all insider incidents are due to negligence

● RBAC is great, but limited in what it can express:

○ “Lars” allowed to “modify configuration” in the “production” environment

○ ...but is he allowed to make any configuration change he pleases?

● Open Policy Agent to the rescue (again!)

○ Library and other third-party rules as inspiration

1.

Difficulty

Impact

https://techjury.net/blog/insider-threat-statistics/
https://www.openpolicyagent.org/
https://github.com/open-policy-agent/library
https://github.com/anderseknert/awesome-opa


Any permission given to an 
application is also given to bad 
actors.

● Hacked applications have all the permissions that the application usually has

○ Third-party SaaS integrations

○ VPN-connected back-office locations

○ Databases

● Always restrict your app components as much as possible

2.

Difficulty

Impact



Keep cloud resources, 
specifically, in mind, too.

● Various Controllers and Operators in the community offer cloud integrations.

○ How seriously do they take cloud security?

● Reject ones without configurable/restrictive permissions

3.

Difficulty

Impact



Does your app unintentionally 
have permissions in your cloud? 

● Beware of “instance profiles” that your cluster VMs may have ability to modify

○ DNS records, 

○ autoscaling groups, 

○ load balancers…

● ...because all applications can also get those permissions!

○ Just call the cloud’s metadata service and get a token with permissions

○ Applications are also “the VM” to the cloud

4.

Difficulty

Impact

✨ Added in
 1.1



Regularly scan all your deployed 
container images, not just when 
they are new.

Do this daily!

● To get up to date security scans, you just need to:

○ loop through all your Pods that are deployed,

○ determine which container images are in active use, and

○ scan those images.

● More secure than “scan on push” or “scan on deployment”

● “Zero trust”: scan, sign, verify, enforce policies with private registries

5.

Difficulty

Impact



Regularly have your own staff 
security test your entire system.

Foster a security-first mindset

● Building is hard, breaking is easy (and fun!)

● Your engineers have access to source code, hacker’s don’t

● Let your engineers try to break your application

● Better if they find errors, than if hackers do!

6.

Difficulty

Impact



Have a Disaster Recovery (DR) 
plan, and actually practice it.

Disaster Recovery != “backups”

● Disaster could be “entire cloud region outage”...

● ...or “we need to go back in time to five hours ago, before this attack started”

How quickly can you destroy your entire infrastructure and get it back again?

7.

Difficulty

Impact



Use an Intrusion Detection System 
and a Security Information and 
Event Management.

IDS & SIEM

● Intrusion Detection System (IDS) verifies that applications behave “normally”

● Security Information and Event Management (SIEM) searches through logging 

systems to find and flag abnormal events

● Could be false positives, but could also be indications of incidents!

● Falco is an IDS and can also be a simple SIEM

8.

Difficulty

Impact

https://falco.org/


Kubernetes is neither safe 
by default, nor by itself.

Summary

● Restrict access (network, users, machines) and privileges
● Periodically use tools to assess current security practices 
● Prevent misconfiguration, don’t just check after the fact
● Cloud resources and permissions: be mindful!
● Security-conscious engineering culture
● Disaster Recovery applies also to security breaches



Uncomfortable question

What permissions have you given me 

in your Kubernetes cluster if I manage 

to hack into your application?



Appropriate Answer

No more than absolutely needed!

And you will see that I am there, because you have 

automated systems that both limit what I can do, and 

raise an alert when I make the application behave in 

ways it doesn’t normally do.



Do you have a 
question? Fire away!

Securing Kubernetes Container Platforms in 2022

or via linkedin.com/in/llarsson/

http://linkedin.com/in/llarsson/

